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Transmission	Lines	‐	Wave	Equations	

 Why	study	TL	‐	Circuit	size	and	frequency
 Transmission	Line	Analysis	(Theory)

o Circuit	Theory	Analysis	of	a	Two	Conductor	Controlled	Geometry	TL	
o RLCG	Model	

 Transmission	Line	Circuit	Analysis	Using	the	Distributed	RLCG	Model:
o Steady	State	Harmonic	Analysis

	
Why	study	TL	‐	Circuit	size	and	frequency	

Transmission	Lines,	TL,	 is	the	name	we	use	to	refer	to	those	wires	and	cables	that	
connect	electrical	and	electronic	devices	(parts	or	components)	to	each	other.	The	
wires	used	to	connect	the	light	bulb	to	the	electrical	mains	is	a	transmission	line,	the	
wire	that	connects	the	landline	phone	to	the	wall	outlet	is	a	transmission	line,	and	the	
cable	that	connects	the	TV	to	the	satellite	receiver,	the	wall	outlet,	or	antenna	is	also	
a	transmission	line.	The	wires	you	used	in	the	circuits	and	electronics	laboratories,	
and	 the	 wires	 you	 used	 in	 “bread‐boarding”	 an	 analog	 or	 a	 digital	 circuit	 are	 all	
transmission	 lines.	 The	 conducting	 strips	 on	 (and	within)	 the	motherboard	of	 the	
computer	as	well	as	the	“interconnects”	inside	the	semiconductor	chips	(processor,	
memory,	etc.)	are	also	transmission	lines.	Figure	2.1	demonstrates	a	few	samples	of	
different	kinds	of	Transmission	Lines.	

	
Figure	2.1	

“Ok.	So,	what	is	so	important	about	transmission	lines	to	make	this	topic	the	opening	
chapter	of	an	EM	book?”	We	used	those	wires	in	our	circuits	and	electronics	labs	with	
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no	 issues	whatsoever.	We	also	wired	 so	many	of	 these	 “bread‐boards”	 and	 things	
worked	well.	The	answer	is	that	it	has	to	do	with	the	length	of	the	wire	relative	to	the	
wavelength	of	the	signals	propagating,	as	well	as	the	wire’s	internal	resistance.	Let	us	
take	these	two	items	one	at	a	time.	First,	we	talk	about	wire	length	and	wavelength.	

To	 remind	 you	 about	wavelength,	 we	 visualize	 a	 signal/wave	 propagating	 in	 one	
dimension,	see	Figure	2.2.	Well,	as	the	figure	shows,	the	signal	travels	a	distance	as	
time	elapses.	The	distance	between	two	consecutive	locations	of	similar	phase	on	the	
wave	(e.g.	two	consecutive	peaks)	is	called	the	wavelength,	.	Simple	physics	tells	us	
that	 that	 distance	 / ,	 where	 “c”	 is	 the	 wave’s	 phase	 velocity	 and	 “ ”	 is	 its	
frequency.	

	
Figure	2.2	

Now,	 let	 us	 assume	 that	 this	 signal	 propagates	 along	 a	 conducting	 wire	
(cable/transmission	line)	of	length	ℓ.	Figures	2.3	demonstrates	that	the	signal	phase	
varies	along	 the	TL	 length.	 	The	amount	of	phase	variation	along	 the	TL	 length,	ℓ,	
depends	on	the	length	of	this	wire	relative	to	the	wavelength,	.	The	ratio	ℓ/	is	the	
same	as	(	phase	/360).		

	
Figure	2.3	

Hence,	the	change	in	signal	phase	between	that	at	the	beginning	of	the	TL	segment	ℓ	
and	its	end,		phase,	equals	360	*	ℓ/This	change	in	phase	corresponds	to	a	change	
in	signal	amplitude	(see	the	figure),	and	hence	the	signal	at	the	beginning	of	the	TL	
segment	ℓ	and	 its	end	are	not	 identical.	Consequently,	 if	you	are	using	 this	 line	 to	
connect	the	output	side	of	a	device	or	a	component	and	the	input	of	another,	then,	one	
cannot	assume	that	the	signal	that	came	out	the	first	device	entered	into	the	second.	
Rather	one	should	account	for	the	changes	introduced	by	the	interconnecting	TL.	
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Working	 at	 low	 frequencies,	 the	 wavelength	 is	 long	 and	 most	 typical	 wiring	
arrangements	 are	 too	 short	 compared	 to	 it.	 In	 these	 cases,	 the	 	 phase	 is	
infinitesimally	 small	 and	 so	 is	 the	 change	 in	 signal	 amplitude.	 [Notice	 that	 for	DC	
“signals”	(zero	frequency),	the	wavelength	is	infinite]		

Now,	we	turn	briefly	to	the	second	item,	“the	wire’s	internal	resistance”	which	may	
not	be	ignored	even	if	ℓ/is	infinitesimally	small.	At	low	frequencies	and	at	DC,	we	
would	 only	 be	 concerned	 about	 the	 signal	 drop	 as	 a	 result	 of	 the	 wire’s	 internal	
resistance.	

Back	to	the	cases	where	the	ratio	ℓ/matters.	The	question	is	how	much	ℓ/can	we	
tolerate	(ignore)	in	our	analysis	(design)?	The	answer	to	this	question	lies	in	deciding	
how	much	signal	level	(and	hence	phase)	change	can	be	tolerated.	Considering	the	
wave	changes	the	fastest	around	its	zero	crossing	where	 	 ,	then	the	worst‐
case	 analysis	 holds.	 Table	 2.1	 demonstrates	 the	 orders	 of	 magnitudes	 of	 circuit	
dimensions	 that	 can	 be	 tolerated	 at	 different	 operating	 frequencies.	 	 Three	
“tolerance”	levels	are	given	corresponding	to	different	levels	of	phase	errors.	

Table	2.1	

%	Change	in	Signal	Amplitude	 x 	 10.0% 1.0% 0.1%

Corresponding		Phase	 sin‐1 x 	 0.100 0.010 0.001 Radians	

Corresponding		Phase	 Degrees 	 5.739 0.573 0.057 Degrees	

Corresponding	ℓ/Phase/2π 	 0.016 0.0016 0.00016
		 		 		

Frequency	 Wavelength	in	air	
Tolerated	
Length	 air

Tolerated	
Length	 air

Tolerated	
Length	 air

Metric	
Unit	

1	Hz	 	 300.0	 	 4.78264 0.47747 0.04775 Mm	

60	Hz	 	 5.0	 	 0.07971 0.00796 0.00080 Mm	

1	kHz	 	 300.0	 	 4.78264 0.47747 0.04775 km

1	MHz	 	 300.0	 	 4.78264 0.47747 0.04775 m

10	MHz	 	 30.0	 	 0.47826 0.04775 0.00477 m

100	MHz	 	 3.0	 	 0.04783 0.00477 0.00048 m

1	GHz	 	 300.0	 	 4.78264 0.47747 0.04775 mm	

10	GHz	 	 30.0	 	 0.47826 0.04775 0.00477 mm	

100	GHz	 	 3.0	 	 0.04783 0.00477 0.00048 mm	

1	THz	 	 300.0	 	 4.78264 0.47747 0.04775 µm
		 	 		

Frequency	 wavelength	
Tolerated	
Length	 air

Tolerated	
Length	 air

Tolerated	
Length	 air

English	
Unit	

1	Hz	 	 186,411.4	 2,971.80 296.688 29.6683 mile	

60	Hz	 	 3,106.9	 49.5299 4.94480 0.49447 mile	

1	kHz	 	 186.4	 2.97180 0.29669 0.02967 mile	

1	MHz	 	 984.3	 15.6911 1.56651 0.15665 feet	

10	MHz	 	 98.43	 1.56911 0.15665 0.01566 feet	

100	MHz	 	 118.1	 1.88293 0.18798 0.01880 inch	

1	GHz	 	 11.81	 0.18829 0.01880 0.00188 inch	

10	GHz	 	 1.181	 0.01883 0.00188 0.00019 inch	

100	GHz	 	 118.1	 1.88293 0.18798 0.01880 mil

1	THz	 	 11.81	 0.18829 0.01880 0.00188 mil
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So,	as	you	can	see,	if	you	are	building	a	circuit	(or	device)	to	operate	at	1	GHz,	your	
wiring	 interconnects	should	be	shorter	 than	0.04775	cm	(0.0188”),	otherwise	you	
must	 analyze	 the	 performance	 of	 such	 interconnect	 using	 “Transmission	 Line	
Theory”	to	avoid	errors	more	than	1%.	

Transmission	Line	Analysis	(Theory):	

The	accurate	and	comprehensive	way	 to	analyze	 the	performance	of	 transmission	
lines	is	to	do	the	analysis	as	an	electromagnetic	fields	problem.		This	requires	the	use	
of	Maxwell’s	equations	to	develop	a	full	EM	field	model	and	study	the	field	waves	as	
they	propagate	along	the	TL.		This	process	will	be	the	subject	of	Chapter	XIII	of	this	
book.		This	means	that	there	is	a	lot	for	us	to	learn	before	we	can	get	into	such	analysis.		
However,	we	can	use	a	circuit	theory	approach	to	develop	a	circuit	model	and	get	a	
simplified	analysis	for	the	TL	for	the	time	being.			

The	 interesting	point	 here	 is	 that	 the	 circuit	 theory	 tools	 that	we	will	 be	 using	 to	
develop	 TL	 analysis	 are	 not	 but	 the	 derivatives	 of	 the	 field	 theory	 and	Maxwell’s	
equations.		We	learned	these	tools	in	earlier	circuit	courses	and	we	are	familiar	with	
them;	specifically,	Ohm’s	Law	and	Kirchhoff’s	Voltage	and	Current	Laws.			

Representing	a	TL	by	an	equivalent	circuit	containing	circuit	elements	that	physically	
models	the	TL	requires	future	knowledge	that	will	be	developed	in	later	chapters	as	
well.	 	 However,	 let	 us	 assume	 that	we	 guess	what	 these	 circuit	 elements	 are	 like	
(qualitatively)	and	have	some	physical	insight	of	their	nature.	For	example,	we	can	
guess	that	the	line	conductors	do	have	some	internal	resistance	(R),	the	TL	as	a	“loop”	
of	 two	 conductors	 has	 magnetic	 “inductive”	 behavior	 (L),	 the	 two	 conductors	
separated	 by	 a	 dielectric	 represent	 a	 capacitance	 (C),	 and	 the	 imperfect	 dielectric	
isolation	between	the	two	conductors	would	cause	leakage	“conduction”	(G).	While	
we	are	familiar	with	these	components	in	circuit	analysis,	the	EM	field	definition	and	
physical	insight	of	these	components	will	be	the	subject	of	later	chapters	in	this	book	
(Capacitance,	Chapter	VI	–	Inductance,	Chapter	IX,	and	resistance	and	Conductance,	
Chapter	VI).	

Circuit	Theory	Analysis	of	a	Two	Conductor	Controlled	Geometry	TL:	

In	this	book,	we	will	confine	our	study	of	TL	theory	to	the	simplest	of	cases;	that	of	
two	conductors	with	uniform	cross	section	(material	and	geometry	do	not	vary	along	
the	TL	length).		This	is	what	we	call	controlled	geometry	two	conductor	transmission	
line.	The	lines	will	be	assumed	straight	with	no	curves	or	bends.	

We	will	further	limit	ourselves	to	the	case	where	the	TL	material,	i.e.	both	conductors	
and	 the	 insulating	 dielectric(s),	 are	 linear	 (properties	 do	 not	 change	 with	 field	
intensity),	and	frequency	independent	(properties	do	not	change	with	frequency).	

Examples	of	such	TLs	include	the	parallel	wire	TL,	the	coaxial	TL,	and	the	microstrip	
TL,	see	Figure	2.4.	
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Figure	2.4:	Examples	of	Controlled	Geometry	TL		

RLCG	Model:	

To	develop	a	physically	based	model,	we	have	to	realize	that	it	is	a	distributed	one,	
i.e.	 it	 is	 distributed	 over	 the	 length	 of	 the	 line	 and	 is	 not	 lumped	 at	 any	 specific	
location.	 To	 explain,	 we	 talk	 about	 the	 internal	 resistance	 of	 the	 two	 conductors	
forming	the	line.	That	resistance	is	determined	by	the	conductor	material,	the	cross‐
sectional	 area	 of	 the	 conductor,	 and	 the	 length	 of	 the	 wire.	 The	 resistance	 is	
distributed	along	the	length	of	the	wire	and	is	not	lumped	at	either	end	or	anywhere	
else.	So,	we	can	model	it	as	a	distributed	resistance	and	we	can	define	a	measure	“Rz"	
as	the	resistance	per	unit	length	of	the	transmission	line.	This	would	be	the	sum	of	
the	total	“circuit"	resistance	per	unit	 length	of	both	TL	conductors.	The	units	of	Rz	
would	be	Ohms/m.	

Likewise,	we	can	talk	about	the	distributed	inductance	of	the	TL	circuit.	We	will	use	
Lz	 to	 denote	 the	 inductance	 per	 unit	 length,	 Henry/meter.	 For	 the	 insulating	
dielectric(s),	we	model	two	different	physical	parameters;	Cz	(Farads/meter)	and	Gz	
(Siemens/meter).		The	capacitance	per	unit	TL	length,	Cz,	is	the	physical	model	of	the	
dielectric(s)	insulation	between	the	two	conductors	and	the	conductance	per	unit	TL	
length,	Gz,	is	the	physical	model	of	the	imperfect	insulation	of	the	dielectric	causing	
leakage	current	through	the	dielectric.	Figure	2.5	depicts	the	nature	of	these	RLCG	
elements.		This	physically	based	circuit	model	of	the	TL	is	not	perfect	or	accurate,	but	
it	will	help	us	set	our	feet	into	this	mysterious	domain	of	TL	theory.		This	circuit	model	
is	typically	referred	to	as	the	“RLCG”	model.		

It	is	to	be	noted	that	most	references	name	the	distributed	RLCG	parameters	as	R,	L,	
C	,	and	G	with	no	subscript.		This	practice	may	lead	to	some	confusion	as	it	implies	a	
reference	to	“whole”	resistance,	inductance,	capacitance	and	conductance	quantities	
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and	 not	 the	 per	 unit	 length	 parameters.	 	 We	 choose	 to	 add	 the	 “z”	 subscript	 to	
distinguish	these	quantities	as	per	unit	“z”	length	parameters.		Hence,	the	incremental	
“whole”	resistance	of	a	line	increment	of	length	Δz	would	be	ΔR=[Rz][Δz].	Likewize,	
ΔL=[Lz][Δz],	 ΔC=[Cz][Δz],	 and	 ΔG=[Gz][Δz]	 for	 the	 inremental	 “whole”	 inductance,	
capacitance,	and	conductance,	respectively.	

	
Figure	2.5	

Transmission	Line	Circuit	Analysis	Using	the	Distributed	RLCG	Model:	

For	this	analysis,	we	will	assume	the	line	to	extend	along	a	linear	axis,	let	us	call	it	the	
‐axis,	Figure	2.6.		At	 =0	we	would	have	the	input	side	(or	the	sending/transmitter	
end)	to	the	TL	(typically,	a	signal	source	with	an	internal	“impedance”)	and	at	the	end	
of	 the	 line,	 say	 =ℓ,	 the	 line	 output	 side,	 a	 load	 would	 be	 connected	
(receiving/receiver	end).	

	
Figure	2.6	
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Now,	as	we	replace	the	line	by	its	distributed	RLCG	circuit	equivalency,	we	expect	the	
voltage	and	currents	to	vary	with	position	along	the	line.	 	We	will	use	the	notation	
V( 	and	I( ,	for	the	voltage	and	current	phasors	as	functions	position,	respectively,	
[or	 , 	and	 , 	 for	 instantaneous	 (time	 domain)	 	 expressions].	 We	 use	 the	
upper	 case	 notations	 for	 the	 phasors	 in	 the	 frequency	 domain	 analysis,	while	 the	
lower	case	represent	the	time	domain	variables.].		At	 =0	and	at	 	=ℓ,	the	voltage	and	
current	 terms	 would	 be	 V(0 ,	 I(0 ,	 V(ℓ ,	 and	 I(ℓ ,	 [or	 0, , 0, , ℓ, ,						

	 ℓ, t ,	respectively.		

Next,	 we	 need	 to	 develop	 expressions	 for	 the	 voltages	 current	 relationships	 as	
functions	of	position	and	time.		In	order	to	develop	a	thorough	and	insightful	analysis	
of	 the	TL	network,	we	 intend	to	carry	the	analysis	 in	both	the	time	and	frequency	
domains	simultaneously.		Moreover,	we	will	also	be	monitoring	the	solutions	for	both	
the	 transient	 and	 the	 steady	 (harmonic	analysis)	 states	 as	we	go.	 	As	we	 take	 the	
analysis	 back	 and	 forth	between	 the	 two	domains,	 some	 readers	may	 find	 it	 a	 bit	
confusing.	 	 However,	 going	 over	 this	 section	 a	 couple	 of	 times,	 and	with	 focused	
attention,	the	results	will	be	all	positive.	

Steady‐State	Harmonic	Analysis:	

In	the	following,	we	will	start	with	the	steady‐state	harmonic	analysis	in	both	time	
and	frequency	domains.		We	will	assume	an	excitation	in	the	form	of	a	time	harmonic	
voltage		

| | 	
	

	 | | 	

Since	 we	 are	 limiting	 our	 discussion	 to	 a	 linear	 system	 (without	 any	 nonlinear	
elements),	 then	 all	 solution	 voltages	 and	 currents	 are	 expected	 to	 be	 of	 the	 same	
frequency	 as	 that	 of	 the	 source;	 for	 example,	 the	 voltage	 on	 the	 line	 at	 a	 general	
location	z	at	time	t	would	assume	the	following	form:	

, | | 	
	

	 , | | 	

In	 the	 following,	we	will	 develop	 TL	 equations	 and	 solutions	 in	 both	
frequency	and	time	domains	side	by	side.	The	left	column	would	be	for	the	
time	domain	development	while	the	right	one	will	be	for	the	frequency	
domain.		In	doing	so,	we	are	attempting	not	to	get	“disoriented/lost	in	the	
ocean	of	the	frequency	domain	and	lose	our	ability	to	get	back	to	shore”.		
Instead,	we	will	constantly	relate	to	the	physics	of	the	development	and	
the	 solution	 by	 “swimming	 close	 to	 shore”	 and	monitoring	 the	 time	
domain	phenomena	while	doing	the	frequency	domain	development.	

To	analyze	the	“electric	circuit”	shown,	we	need	to	build	the	distributed	equation	for	
V( , 	and	I( , 	[or	 , 	 	 , ]	along	the	line.		We	do	that	by	considering	
an	infinitesimally	small	increment	of	the	line	length	 	(to	start	at	 	and	end	at	 + ).		
Writing	the	circuit	 (input‐output)	relationships	between	the	voltages	and	currents	
for	 the	 	 increment	 enables	 us	 to	 build	 the	 differential	 equation	 describing	 the	
behavior	of	this	physically	based	circuit	model.	To	do	that,	we	use	Kirchhoff's	Voltage	
and	 Kirchhoff's	 Current	 Laws	 (KVL	 and	 KCL)	 for	 the	 	 “equivalent”	 circuit	 see	
Figure	2.6 .	
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Time	Domain	Analysis:	 , 	 	 , 	 Eq	# Frequency	Domain	Analysis:	
, ,

Forming	the	Differential	Equations:	
We	start	with	the	differential	relationship,	while	skipping	the	writing	of	“,t”	and	“j ”	in	all	voltage	and	
current	expressions	

∆ , , ∆ , 	 2.1 ∆ ∆

∆ , , ∆ z, 	 2.2 ∆ ∆ z
Now,	we	apply	KVL		

, ∆ , 	 2.3 ∆

Where	 	 	 	 	 	 	are	the	voltage	drops	across	Rz ∆ and	Lz ∆ ,	and	using	line	 2.1
, 	∆ ∙ , 	∆

∙
,

,
∆ , 	

2.4 	 ∆ ∙ ∆ ∙
∆

,
∙ , ∙

,
	 2.5 ∙ ∙

Taking	the	limit	as	∆ 	becomes	infinitesimally	small	and	approaches	zero
,

∙ , ∙
,

	 2.6 ∙

Next,	we	apply	KCL		
, ∆ , 	 2.7 ∆

Where	 	 	 	 	 	 	are	the	current	drops	through	Gz ∆ and	Cz ∆ ,	and	using	Equation 2.2 	
, ∆ ∙ ∆ , ∆

∙
∆ ,

, ∆ , 	

2.8 ∆ ∙ ∆ ∆ ∙
∆

,
∙ ∆ ,

∙
∆ ,

	
2.9 ∙ ∆ ∙ ∆ 	

Taking	the	limit	as	∆ 	becomes	infinitesimally	small	and	approaches	zero
,

∙ , ∙
,

	 2.10 ∙

Solution:	
We	have	two	simultaneous	differential	equations	in	 . So,	we	need	to combine	them	in	a	way	to	
end	up	with	a	new	equation	in	one	variable	only.	
Differentiate	line	 2.6 	with	respect	to	 z 	
and	line	 2.10 	with	respect	to	 t 	

Differentiate	 line	 2.6 	 with	 respect	 to	 z	 and	
using	line	 2.10

,
∙

,

∙
,

	
2.11 	 ∙

,
∙

,
∙

,
	 2.12

Combining	lines	 2.11 	and	 2.12 	 Combining	lines	 2.10 	and	 2.11

,
∙ ∙ , ∙

,

∙ ∙
,

∙
,

2.13 	 	
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,
∙ ,

∙
,

∙
,

	

2.14 	 ∙ ∙ 	

Hence,	here	we	have	one	equation	in	one	variable;	 the	voltage.	 	 It	 is	 important	to	recognize	that	the	
resulting	Equation	 2.14 	is	a	second	order	differential	equation,	D.E.		We	combined	two	first	order	D.E.	
to	yield	one	second	order	one.	
In	doing	so,	we	had	to	differentiate	one	of	the	two	first	order	D.E.		Taking	the	derivative	eliminates	the	
constant	term	in	that	quantity.		This	elimination	means	that	we	lost	one	piece	of	information	and	that	
information	is	not	represented	as	part	of	the	obtained	second	order	D.E.		The	only	way	to	recover	that	
missing	information	is	by	using	the	original	first	order	D.E.	before	differentiation.	
Therefore,	what	we	need	to	do	is	solve	 2.14 	for	the	voltage	and	get	back	to	Equation	 2.6 to	get	the	
current.	
To	 solve	 the	 D.E.	 in	 2.14 ,	 we	 use	 the	
Laplace	Transform	

∙ ∙ ∙

,
∙ ∙ 	 2.15 ,

∙ ∙ 	

Defining		 	
	 	 2.16 ∙

∙ 	 2.17 ∙

Solving	the	DE	in	line	 2.17 	
	 2.18

	

Laplace	Transform	applied	to	line	6	 From	line	6

∙ 	 2.19

1
∙ 	 2.20

1
∙

∙ 	 2.21 ∙ 	

	
1
	 2.22

1

Discussion	of	Possible	Solutions:	 Summary:
The	 inverse	 Laplace	 transform	 of	 these	
equations	back	to	the	time	domain	in	the	
general	 case	 is	 too	 complicated.		
However,	 possible	 solutions	 can	 be	
achieved	for	either	the	case	of	harmonic	
signals	 s 	and	the	case	of	lossless	TL	

0	 	 0 	

2.23
1
∙

2.24 / 	

2.25 ∙ 	

	 2.26

Case	 of	 steady	 state	 harmonic	 signals	
s :	 See	 Right	 Column	 starting	 line	
2.23 	

2.27
2.28 Transfer	Back	to	Time	Domain:

2.29
, | |

| |

	 2.30
, | / |

| / |
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Case	of	lossless	TL	 	 	 	
Lines	 2.16 	and	 2.22 	reduce	to	 Lines	 2.25 	and	 2.22 	reduce	to

	 	 / 	 2.31 and	 /

Which	reduces	 2.18 	and	 2.21 	to	 Which	reduces	 2.27 	and	 2.23 	to

	 2.32
1

/
∙

	
2.33

1

/

Transfer	Back	to	Time	Domain:	 Also,	 2.29 	and	 2.30 	reduce	to

, 	 	 	 2.34
, | |

| |

,
1

/
	

	
2.35

, | / |
| / |

So,	we	have	arrived	at	a	solution	for	the	steady‐state	harmonic	case	using	both	the	
time	 domain	 and	 the	 frequency	 domain	 approaches.	 	 The	 obtained	 solutions	 are	
expressed	by	Equations	 (2.29)‐(2.30)	 in	 the	 time	domain	and	 in	Equations	 (2.23)‐
(2.27)	in	the	frequency‐domain	phasor	format.		We	did	not	carry	out	the	solution	in	
the	time	domain;	instead,	we	made	use	of	the	Laplace	transform	to	solve	the	second	
order	D.E.		In	a	way,	that	was	similar	to	resorting	to	the	frequency	domain	for	help.		
The	Laplace	domain	is	but	a	generalization	of	the	frequency	domain	as	it	uses	
	 and	 hence	 allows	 the	 study	 of	 transients.	 	 When	 0,	 the	 Laplace	 domain	

coincides	with	 the	 frequency	 domain	 and	 the	 problem	 reduces	 to	 its	 steady‐state	
harmonic	solution.	

In	the	special	case	of	a	lossless	TL,	we	were	able	to	carry	out	the	solution	further	in	
the	 time	 domain	 to	 non‐harmonic	 cases.	 	 These	 solutions	 are	 given	 by	 Equations	
(2.34)‐(2.35).	 	 The	 corresponding	harmonic	 solutions	 are	 given	 on	 the	 right	 hand	
column	of	the	same	lines.	
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