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Chapter	II‐Lecture	2	of	10	

Transmission	Lines	‐	Wave	Equations	

 Physical	Implications	of	Obtained	Solution:		α,	β,	λ,	cph	
 Physical	Implications	of	Obtained	Solution:	γ,	Zo,	V+,	V‐	

	
Last	Lecture:	

In	 lecture	 II.1,	 we	 carried	 out	 the	 Transmission	 Line	 Circuit	 Analysis	 Using	 the	
Distributed	RLCG	Model.	

The	line	was	assumed	to	extend	along	the	 ‐axis,	Figure	2.6.		The	input	side	(or	the	
sending/transmitter	end)	to	the	TL	was	connected	to	a	signal	source	with	an	internal	
“impedance”	and	at	the	receiving	end	at	 =ℓ	the	line	was	connected	to	a	load.	

	
Figure	2.6	

Using	the	distributed	RLCG	physically	based	model	along	with	Kirchhoff's	Voltage	and	
Kirchhoff's	Current	Laws	(KVL	and	KCL),	we	were	able	to	write	differential	equations	
describing	the	voltage	and	current	behaviors	as	 functions	of	position	(z).	This	was	
performed	in	both	time	and	frequency	domains.	

The	steady‐state	harmonic	analysis	 in	 the	 frequency	domain	yielded	 the	 following	
expressions	for	voltage	and	current	expressions:	
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Eq	#	 Frequency	Domain	Analysis:	 , ,

2.18 	

2.23 	
1
∙

2.24 	 /

2.25 	 ∙

	

The	corresponding	time	domain	expressions	are:	

2.29 	 , | | | |

2.30 	 , | / | | / | 	

	

Also,	we	concluded	that	the	expressions	for	case	of	lossless	TL	( 	 	 	

2.31 	 and	 /

2.32 	

2.33 	
1

/

2.34 	 , | | | |

	

Physical	Implications	of	Solutions	‐	 , , , 	 :	

At	this	point,	it	is	important	to	take	a	pause	to	examine	the	obtained	results	and	make	
sure	that	we	relate	to	their	physical	implications.	

We	examine	the	harmonic	solution	obtained	in	the	time	domain:			

, | | | | 	

This	solution	has	two	terms.	Let	us	take	them	one	at	a	time:		| | cos
	 describes	 a	 voltage	wave	 that	 changes	with	 both	 	 ,	 a	 graph	 of	which	 is	

shown	in	Figure	2.7	

	
Figure	2.7	

It	is	evident	from	the	figure	that	this	term	represent	a	travelling	wave	that	moves	in	
the	positive	 	direction	(and	hence	the	plus	superscript	in	denoting	 ).	The	wave	
amplitude	 attenuates	 (decays)	 exponentially	 with	 distance	 with	 an	 attenuation	
coefficient	of	 .	

The	wave	experiences	a	full	cycle	in	a	distance	 ,	and	hence	the	corresponding	phase	
change	 	should	equal	to	2 .	i.	e.	 2 ,	or	 2 / .	

The	velocity	of	its	phase	propagation	can	be	derived	by	monitoring	the	motion	of	a	
specific	phase	on	the	wave,		
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	 	 	 ∆ ∆ 	, 	∆ /∆ / 		
Phase	velocity	 	 2.36 	

With	 this	 definition	 for	 the	 phase	 velocity,	 the	 terms	 of	 Equations	 (2.29)	 can	 be	
rewritten	as:	

, | |	 	 | |	 	 2.37 	

which	makes	Equation	(2.34)	for	the	lossless	line	reduce	to:	

, | |	 | |		 	 2.38 	

Now,	comparing	this	form	to	that	obtained	in	the	time	domain	for	the	lossless	line	in	
Equation	 (2.34),	 we	 conclude	 that	 the	 time	 argument	 	 must	 be	

equivalent	to	 	obtained	in	Equation	(2.38),	which	implies	that		

	 2.39 	

Consequently,	 the	 time	 domain	 solution	 in	 the	 lossless	 line	 case,	 Equation	 (2.34),	
becomes:	

, 	 2.40 	 	

Now,	back	to	the	second	term	of	the	 , 		solution	 | | cos

| |	cos ,	Figure	2.8.	 	This	term	represent	a	travelling	wave	that	

moves	 in	 the	 negative	 ( 	 direction	 (and	 hence	 the	 minus	 superscript	 in	
denoting	 ).	The	wave	amplitude	attenuates	(decays)	exponentially	with	distance	
with	 an	 attenuation	 coefficient	 of	 .	 This	 term	 has	 the	 same	 exact	
	 	 	of	the		 	term.	

	
Figure	2.8	

The	two	terms	combined	represent	the	 , 	solution	obtained	in	Equation	(2.29).	
The	complete	solution	is	shown	in	Figure	2.9.	
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Figure	2.9	

By	the	way,	and	before	we	leave	this	point,	in	the	lossless	TL	case,	the	waves	on	the	
TL	would	not	suffer	any	attenuation.		The	corresponding	wave	shapes	are	shown	in	
Figure	2.10.	

	
Figure	2.10	

Physical	Implications	of	Solutions	‐	 , , , 	 :	

Now	as	we	saw	the	physical	meaning	of	 	 	 ,	let	us	move	back	to	the	frequency	
domain	 solution	 in	 order	 to	 interpret	 the	 physical	 meaning	 of	 the	
parameters:	 , , , 	 .	

∙ 	

	is	a	complex	quantity	with	real	part	 		and	an	imaginary	part	 	.		

The	real	part, ,	appear	in	the	exponent	of	the	voltage	and	current	solutions	as	to	
affect	 the	 amplitude	 of	 the	 wave	 along	 the	 TL	 (coordinate	 z).	 	 This	 real	 part	
becomes	zero	for	lossless	lines	 0	and,	hence,	it	is	related	with	losses	
and	causes	the	signals	to	attenuate	as	they	travel	along	the	line.		For	this	reason,	
	will	 be	 called	 the	 attenuation	 coefficient,	 and	 its	 units	 are	 Nepers/meter.	

	 	 20/ 10 		8.686	 	 	

The	 imaginary	part, ,	also	appears	 in	the	exponent	of	 the	voltage	and	current	
solutions	as	to	affect	the	phase	of	the	wave	along	the	TL	(coordinate	z).		Hence,	
	will	be	called	the	phase	constant,	and	its	units	are	radians/meter.	For	lossless	

lines,	 .	

	is	called	the	complex	propagation	constant	of	the	TL.	

/ 	

	is	a	complex	quantity	with	real	part	 		and	an	imaginary	part	 	.	For	lossless	
lines,	it	reduces	to	a	real	value:	

/ 	

This	may	appear	rather	puzzling	as	we	talk	about	a	“Lossless”	TL	with	 	equal	
to	so	many	Ohms,	e.g.,	a	cable	TV	TL	has	a	characteristic	impedance	of	75	Ohms.		
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The	thing	is	that	there	are	no	75	Ohms	resistor(s)	in	existence	anywhere	on	this	
line	and	the	75	Ohms	does	not	represent	its	internal	resistance.		It	simply	means	
that	the	75	Ohms	is	nothing	but	a	characteristic	number	representing	the	ratio	
between	the	traveling	voltage	and	current	waves.	

	is	called	the	characteristic	impedance	of	the	TL.	

It	is	worthy	to	note	that	both	 	 	 	fully	characterize	the	TL	model.		Given	 	 	 	
and	using	Equations	(2.24)	and	(2.25),	the	TL	RLCG	model	can	be	fully	determined.		

While	 both	 	 	 	 are	 characteristic	 parameters	 of	 the	 TL,	 , 	 	 are	 not.		
| | 	 ,	and	 | | 	are	two	arbitrary	constants	that	resulted	from	

solving	the	TL	differential	equation	without	applying	the	boundary	conditions,	B.C.	
These	 constants	 can	be	 fully	determined	once	 the	TL	 conditions	 at	 its	 boundaries	
( =0	and	at	 	=ℓ)	are	implemented.	

	
Figure	2.11	

Referring	to	Figure	2.11,	the	boundary	conditions,	B.C.,	at	the	Source	end	are:	

0 ∙ 0 ∙ ,	

and	the	B.C.	at	the	Load	end	are	

ℓ ℓ ℓ ∙ ℓ ∙
1 ℓ ℓ 	

These	are	two	“complex	variable”	equations	that	can	be	solved	to	yield	both	 	and	
	(magnitudes	and	phases).		The	resulting	expressions	can	be	written	in	the	form:	

	

ℓ
	 2.41 	

ℓ	 2.42 	

Physically,	these	are	the	levels	of	the	waves	travelling	on	the	line.		As	will	be	discussed	
later,	the	 	is	the	level	of	the	voltage	wave	traveling	in	the	positive	z	direction,	while	
the	 	is	that	of	the	negative	z	wave.		Considering	that	we	only	have	one	source	of	
power	(at	the	source	end),	there	is	only	one	explanation	for	the	presence	of	a	negative	
z	traveling	wave;	that	it	must	have	resulted	as	a	result	of	waves	reflecting	(bouncing	
back)	from	the	load	end.		A	useful	analogy	here	is	watching	the	water	waves	at	the	
seashore.	 	The	sea	is	the	source	of	water	that	travels	towards	the	shore.	 	After	the	
water	waves	hit	the	shore,	we	notice	water	waves	traveling	from	the	shore	back	to	
the	sea.		These	are	reflections	of	the	original	sea	waves.	

⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃	


