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o Some	Special	Cases 

	
Last	Lecture:	

In	 lecture	 II.1,	 we	 carried	 out	 the	 Transmission	 Line	 Circuit	 Analysis	 Using	 the	
Distributed	RLCG	Model.	

	
Figure	2.6	

The	steady‐state	harmonic	analysis	 in	 the	 frequency	domain	yielded	 the	 following	
expressions	for	voltage	and	current	expressions:	

Eq	#	 Frequency	Domain	Analysis:	 , ,

2.18 	

2.23 	
1
∙

2.24 	 /

2.25 	 ∙

	

The	corresponding	time	domain	expressions	are:	

2.29 	 , | | | |

2.30 	 , | / | | / | 	

	

Also,	we	concluded	that	the	expressions	for	case	of	lossless	TL	( 	 	 	

2.31 	 and	 /

2.32 	

2.33 	
1

/

2.34 	 , | | | |
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In	lecture	II.2,	we	explored	the	Physical	Implications	of	Solutions	‐	 , , , 	 	to	
conclude	that	the	solution	(2.18	–	2.29)	represent	two	waves	traveling	in	opposites	
sides.		The	(+)	wave	and	(‐)	wave	travel	in	both	(+z)	and	(‐z)	directions,	respectively.	

	
Figure	2.9	

While	in	the	lossless	TL	case,	the	waves	on	the	TL	would	not	suffer	any	attenuation.		
The	corresponding	wave	shapes	are	shown	in	Figure	2.10.	

	
Figure	2.10	

Physical	Implications	of	Solutions	‐	 :	

In	 this	 lecture,	 we	 will	 learn	 about	 the	 physical	 implications	 of	 the	 reflection	
coefficient	Γ(z)	defined	as	the	ratio	between	the	–z	and	+z	waves.		We	will	also	learn	
about	the	driving	point	impedance	Z(z)	and	its	relationship	to	Γ(z).	

As	per	our	earlier	discussion,	the	 	wave	results	from	reflections	of	the	 	wave	as	
it	bounces	off	the	TL	“discontinuity”	at	the	load	end.	Hence,	we	define	the	ratio	of	the	
“reflected”	(‐z)	wave	to	the	“incident”	(+z)	wave	as	the	reflection	coefficient.	

	 2.18 	

	
1
∙ 	 2.23 	

Defining	 	

	 2.43 	

1 	 2.44 	

1 	 2.45 	

Hence,	the	“driving	point	impedance”	at	any	location	on	the	line,	 is	given	by

	 			and	hence,			 	 2.46 	

At	both	TL	ends,	 	reduces	to		

0
0
0

1 0
1 0

	 2.47 	

ℓ
ℓ
ℓ

1 ℓ
1 ℓ

	 2.48 	

This	gives	us	an	insight	regarding	 ℓ 	
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1 ℓ
1 ℓ

⇒ ℓ 	 2.49 	

It	means	that	 ℓ 	exists	as	a	result	of	the	impedance	discontinuity	 mismatch 	
Using	 2.43 	twice	at	both		 	 	ℓ		

	 ℓ
ℓ

ℓ	 2.50 	

ℓ ∙ ℓ ℓ ∙ 	 2.51 	
Here,	 ℓ 	represents	a	distance	" "starting at	the	load	end	and	extending opposite	to	
the	" "coordinate,	see	Figure	2.12.	
The	use	of	the	coordinate	" "	instead	of	" "	is	typical	in	solving	impedance	matching	problems	
in	TL	analysis	and	design	

	

	
Figure	2.12	

From	 Equation	 (2.49),	 we	 conclude	 that	 if	 it	 was	 not	 for	 the	 mismatch	
	between	the	load	impedance	 	 		the	TL	characteristic	impedance	 ,	and	as	a	

consequence	the	reflection	coefficient	Γ ,	the	reflection	(‐z	wave)	 	would	not	
exist.	Therefore,	we	can	say	that	waves	traveling	on	a	uniform	TL	with	a	matched	end	
are	fully	absorbed	by	the	load	and	will	never	experience	any	reflections.	Likewise,	if	
the	 TL	 is	 uniform	 and	 infinite	 in	 length,	 with	 no	 discontinuities,	 the	 source	 end	
launched	 waves	 would	 continue	 to	 travel	 indefinitely	 resulting	 in	 the	 absence	 of	
reflections	(‐z	waves).		This	is	exactly	what	happens	to	a	light	beam	projected	in	the	
open	space.		If	it	meets	a	reflective	object	(mismatched	impedance),	a	reflection	takes	
place.	However,	no	reflections	occur	in	one	of	two	possible	cases,	the	case	of	a	fully	
absorbing	 object	 (matched	 impedance)	 and	 the	 case	 of	 open	 space	 with	 no	
intercepting	objects.	

Before	 we	 leave	 this	 section,	 let	 us	 finalize	 the	 expressions	 for	 the	 voltages	 and	
currents	at	any	z‐location	on	the	line	as	well	as	at	both	the	sending	and	receiving	ends:	

We	 start	 by	 rewriting	 Equation	 (2.41)	 in	 terms	 of	 the	 Γ’s	 (reflection	 coefficients)	
associated	with	the	source	and	load	impedances,	

ℓ 	 	 2.52 	

	 2.53 	

Note	that	Γs	is	different	from	Γ(0).		Γs	is	defined	in	Equation	(2.53)	as	the	reflection	
coefficient	seen	by	the	“–z”	signal	traveling	back	towards	the	source	with	the	source	
impedance	acting	as	the	load	to	the	Zo	line.	On	the	other	hand	Γ(0)	is	the	reflection	
coefficient	seen	at	the	input	port	of	the	line	by	the	“+z”	wave,	Γ(z=0)=V‐/V+,	Equation	
(2.50).	

Now,	back	to	Equation	(2.41),	
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ℓ

	

	 	 	 ℓ

	

	 	 	 ℓ

	 2.54 	
ℓ 	

	 	 	 ℓ
ℓ 	 ℓ

	 	 	 ℓ 2.55 	

Using	Equations	(2.44),	(2.51),	and	(2.54),	we	can	write	the	voltage	as	a	function	of	
position	as	follows:		

1
	
2

1
1	 	 	 ℓ 1 ℓ 	

	 ℓ

	 	 	 ℓ 	 2.56 	 	

Substituting	z=0	and	z=ℓ	in	this	general	expression,	we	can	write	the	voltages	at	the	
sending	and	receiving	ends	as,		

0
	 ℓ

	 	 	 ℓ 	 2.57 	

ℓ
	 	 ℓ

	 	 	 ℓ 	 (2.58)	

Alternatively,	in	terms	of	impedances,	we	can	write:	

0
	 ℓ

ℓ 	 2.57a 	
	

ℓ
ℓ	 2.58a 	

	

Two	Special	Cases:	The	Infinite	Line	and	the	Matched	Load	Line	

Let	us	assume	a	TL	with	infinite	length.		As	we	just	stated	in	the	previous	section,	
there	will	be	no	reflections	from	the	load	resulting	in	Γ ℓ 0,	and	hence	Γ z =0	
and	 0.	

Consequently,	according	to	(2.18)	and	(2.23),		

	 	 	 ∙ 	 2.59 	

which	makes	 	 	at	all	z	 locations	 including	z=0	(TL	 input	 impedance),	
0 	 .	

Solving	the	boundary	condition	at	the	source	end,		

0 ∙ 0 ∙
1

	

which	yields:	

0 	 0 		 2.60 	

Therefore,	physically	speaking,	both	an	infinite	line	and	a	match	terminated	line	
exhibit	matching	at	line	locations	including	the	line	input	(at	z=0).		Only	waves	
traveling	in	+z	direction	can	exist	on	the	line.		

Standing	Waves	and	Standing	Wave	Ratio:	
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The	combination	of	waves	 traveling	 in	both	directions	on	 the	same	TL	 is	 likely	 to	
cause	 standing	waves	 to	 form.	 	To	explain,	 let	us	 start	with	 the	 lossless	 line	 time‐	
domain	 combined	 solution,	 Equation	 (2.34).	 By	 adding	 and	 subtracting	 the	 term	
| | cos 	in	the	right	hand	side	of	the	equation,	we	obtain:	

, | | | | 		
, | | | |

| | 	
, | | | | 2| | ∙
	 2.61 	

Where	 	 	 	 	 	 	 	 , .	

The	 first	 term	of	 the	 resulting	equation,	 |V | |V | cos ωt βz φ ,	has	 the	
same	traveling	form	as	the	positive‐z	traveling	wave	but	with	a	reduced	amplitude	of	
| | | | .	On	 the	 other	 hand,	 the	 second	 term,	 2|V | cos ωt φ ∙ cos βz
φ 	has	an	amplitude	of	2| |	and	describes	a	“standing	wave”	that	does	not	travel	
in	either	direction	on	the	line	and	t	is	characterized		by	stationary	“peaks/maxima”	
and	“valleys/minima”.	This	can	be	seen	mathematically	by	examining	the	expression	
and	recognizing	that	the	spatial	dependence	term	 cos βz φ 	forces	the	term	to	
zero	 at	 certain	 z	 locations	 irrespective	 of	 the	 time	 dependent	 term.	 	 This	 is	
demonstrated	in	Figure	2.13.	

	
Figure	2.13	

Hence,	 expression	 (2.61),	 as	 seen	 in	 the	 figure,	 is	 a	 mixture	 of	 a	 traveling	 wave	
component	and	a	standing	wave	one.	The	amplitude	of	the	standing	wave	component	
2| |,	is	determined	by	the	level	of	the	reflected	signal.		In	the	absence	of	reflections,	
there	will	be	no	standing	waves	and	we	get	pure	traveling	waves	on	the	line.	However,	
a	100%	reflection	where	| | | |	results	in	a	pure	“100%”	standing	waves	on	the	
TL	since	the	traveling	wave	term	 |V | |V | 	reduces	to	zero.				

Standing	Wave	Ratio:	

An	important	indicator	of	the	level	of	standing	waves	in	a	TL	network	is	the	standing	
wave	ratio,	SWR,	the	definition	for	which	is	the	ratio	of	the	peak	(max)	amplitude	of	
the	signal	and	its	valley	(min)	value:	
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| |

| |

| |

| | | |

| |

| |
	 2.62 	

SWR=1	for	a	pure	traveling	waves	(|Γ| 0 	and	SWR=∞	for	a	pure	standing	wave	
(|Γ| 1 .	

Figure	2.14	is	a	graphical	demonstration	of	the	relationship	between	the	SWR	and	|Γ|.	

	
Figure	2.14	

For	 lossy	 lines,	 the	 line	attenuation	causes	 the	signals	 to	decay	down	the	TL	path,	
resulting	in	the	signal	forms	displayed	in	Figure	2.15.	

	
Figure	2.15	

The	figure	shows	the	presence	of	a	mixture	of	traveling	and	standing	waves,	just	as	in	
the	lossless	case.		It	is	important	to	note	here	that	since	all	the	levels	are	changing,	it	
is	not	possible	 to	define	a	 single	value	 for	 the	SWR.	 	 It	 is	 typical	 in	 such	cases;	 to	
identify	the	location	at	which	the	SWR	is	given,	i.e.,	the	SWR	of	the	load	would	be	that	
of	the	nearest	minimum	and	maximum	to	the	TL	load.	

Another	 way	 of	 looking	 at	 the	 combination	 of	 the	 two	 traveling	 waves	 and	 their	
“interference”	is	to	consider	the	corresponding	phasor	diagrams.		For	convenience,	
we	 will	 consider	 the	 case	 of	 a	 lossless	 TL	 only.	 	 In	 this	 case,	 the	 two	 phasors	
representing	the	two	traveling	waves	are:	

	 	 	

Referring	 to	 Figure	 2.16,	 we	 will	 start	 with	 a	 graph	 of	 the	 two	 phasors	 at	 some	
location	z1	where	they	line	up	in	their	phase.		As	we	move	from	z1	to	z2	(where	z2>z1),	
the	phase	of	the	V+	phasor	changes	by	 	(decreases)	while	the	phase	of	the	
V‐	 phasor	 changes	 by	 	 increases .	 Similarly,	 we	 monitor	 the	 phasors’	
rotation	as	we	move	to	 	and	 .		The	sum	of	the	two	phasors	is	displayed	for	all	four	
positions	in	part	(b)	of	the	figure,	and	its	magnitude	is	plotted	vs	distance	in	part	(c)	
of	the	figure.	We	notice	that	the	sum	exhibits	the	same	shape	as	that	demonstrated	
earlier	in	Figure	2.13.		We	also	notice	that	the	peaks	(maxima)	occur	when	the	two	
phasors	 line	 up	 with	 equal	 phases.	 	 The	 spacing	 between	 two	 consecutive	 peaks	
correspond	to	a	180	degree	rotation	which	is	equivalent	to	a	distance	if	 /2.	
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	 (a)	 (b)	 (c)	 	

Figure	2.16	

Standing	Waves	and	the	Bounce	Diagram:	

In	this	section,	we	further	our	exploration	of	the	physics	of	the	multiple	reflections	/	
standing	 waves	 in	mismatched	 TL	 networks.	 In	 this	 regard,	 we	will	 consider	 the	
general	case	of	impedance	mismatches	at	both	the	source	and	load	ends;	hence,	we	
can	see	that	multiple	wave	reflections	will	occur	on	the	line	with	waves	bouncing	back	
and	forth	between	the	(generally)	mismatched	TL	ends.		Figure	2.17	depicts	the	TL	
network	and	the	expected	“bounce”	diagram	as	a	result.			

	
Figure	2.17	

Using	this	bounce	(reflection‐transmission)	diagram,	let	us	now	examine	the	physical	
meaning	 of	 the	 wave	 reflection	 and	 the	 corresponding	 reflection	 coefficient	 as	

defined	in	the	frequency	domain	in	Equation	(2.50),	Γ .	We	claim	that	the	
		wave	resulted	from	the	reflections	of	the	wave	 .	 	Meanwhile,	we	do	

not	see	any	discontinuities	at	a	general	location	z	that	can	cause	reflections	at	that	
location.	 	So,	where	did	the	 	 	come	from?		The	answer	lies	in	examining	the	
transients	build	up	before	the	steady	state	(harmonic)	is	reached.			

In	this	regard,	and	based	on	the	time‐domain	solution	obtained	earlier	in	Equation	
(2.29),	a	 , 	wave,	was	initially	launched	at	the	sending	end	of	the	line.		This	wave	
traveled	along	the	TL	experiencing	both	attenuation	and	phase	shift	but	no	reflections	
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until	 it	met	the	 first	discontinuity	at	the	 load	end.	 	At	the	 load	“discontinuity”,	 this	
wave	suffered	its	first	reflection	triggering	the	backward	traveling	wave,	 , .		The	
reflected	 wave	 would	 then	 travel	 back	 to	 the	 source	 end	 experiencing	 only	
attenuation	and	phase	change	until	it	met	the	source	end	discontinuity.		A	source	end	
reflection	would	then	be	in	order	and	the	bouncing	back	and	forth	continued.		With	
each	of	these	reflections,	in	general,	some	of	the	signal	energy	would	be	absorbed	in	
the	reflecting	elements	(the	TL	end	termination	impedances,	 	 	 .		

At	 steady	 state,	 there	will	 continue	 to	 be	 a	multiple	 reflections	 at	 both	 line	 ends	
resulting	in	a	series	of	+z	traveling	waves	and	another	series	of	–z	traveling	waves.		
The	 sum	of	 terms	of	 each	of	 these	 two	 series	 correspond	 to	 the	 two	 terms	of	 the	
steady‐state	harmonic	solution,		 	for	the	+z	series	and	 	for	the	–z	series.		
(The	 proof	 of	 this	 statement	 will	 be	 carried	 out	 later	 in	 this	 chapter).	 	 The	 ratio	
between	these	two	terms	is	what	we	defined	as	the	reflection	coefficient	Γ .		So,	as	
you	can	see,	Γ 	does	not	physically	exist	as	a	localized	phenomenon	at	the	z	location	
of	the	line;	rather,	it	is	a	result	of	the	comprehensive	performance	of	the	whole	setup	
as	seen	by	the	line	at	the	z	location.	

It	is	interesting	to	observe,	that	Γ 	has	a	localized	physical	meaning	at	 ℓ.		At	this	

location,	and	using	Equation	(2.49),	Γ Γ ℓ 	 	which	is	determined	by	the	

discontinuity	 mismatch	 at	 that	 location	 and	 is	 totally	 independent	 of	 the	 rest	 of	
system.		

	

Addendum	A	

Driving	Point	Impedance	

TL	Driving	Point	Impedance	and	Input	Impedance:	

It	is	obvious	from	the	discussion	above	that	the	impedance	relationships	on	a	TL	plays	
a	dominant	role	in	assessing	its	performance.	For	this	reason,	in	the	following	section	
we	will	focus	on	developing	some	critical	impedance	relationships.	

First,	let	us	derive	an	expression	for	what	we	know	as	the	“driving	point	impedance”.		
This	 is	 the	 impedance	 seen	by	 an	observer	 at	 a	 given	 location	on	 the	 line	 looking	
towards	the	load	side,	Figure	2.20.	
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Figure	2.20	

Using	Equation	(2.46)	and	(2.51)	above,		

	
1
1

	
1 ℓ ∙
1 ℓ ∙

	
1 ∙

1 ∙
	

∙

∙

∙ ∙

∙ ∙
	

∙ ∙

∙ ∙

∙

∙
	 2.70 	

Hence,		

0
∙ ℓ

	 	 ∙ ℓ
	 2.71 	

To	gain	some	insight	into	this	expression,	let	take	the	lossless	transmission	line	case	
where	

	 	 ,	
∙ 	

∙ 	
,	 2.72 	

and	since	tan /2 tan tan 2 / tan ,	then	

/2 	or	 /2 	 2.73 	

In	other	words,	the	impedance	values	repeat	on	a	lossless	line	every	half‐wavelength	
while,	as	we	recall,	the	voltage	waves	currents	repeated	every	full	wavelength.			

Furthermore,	since	tan 	 /4 tan /2 tan ,	then	

/4
∙

∙ 	

∙ 	

∙ 	
	 /	 	 2.74 	
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Therefore,	 every	 quarter‐wavelength	 the	 lossless	 TL	 driving	 point	 impedance	
inverses	its	nature.		

Some	Special	Cases:	

For	a	lossless	line	(almost	true	for	low	loss	lines	as	well),	we	can	summarize	some	
features	derived	from	Equation	(2.72)	in	the	Table	(2.2):	

Table	2.2	

	 Z z ,	all	values	 /2 /4

	 Matched 	 	 Matched 	 Matched Matched
0	 Short	Circuit 	 Reactive	values:

‐∞ X z ∞	
Same	 Zd ∞ Open	Circuit

∞	 Open	Circuit 	 Reactive	values:
‐∞ X z ∞	

Same	 Zd 0	 Short	Circuit

	has	 positive	
reactance	 inductive 	

Reactive	values:
‐∞ X z ∞	

Same	 Zd negative	 reactance	
capacitive

	has	 negative	
reactance	 capacitive 	

Reactive	values:
‐∞ X z ∞	

Same	 Zd positive	 reactance	
inductive

| | 	 	 Same	 Zd | | 	
| | 	 	 Same	 Zd | | 	

	

It	 is	 interesting	to	know	that	some	of	 features	cited	in	the	above	table	have	useful	
applications.		One	typical	application	is	the	use	of	a	quarter‐wavelength	TL	section	to	
act	as	an	impedance	transformer	(adapter).			

| / 	 /	 	 2.75 	

Examples:	A	quarter‐wavelength	TL	section	terminated	by	a	capacitor	works	as	an	
inductor	for	use	in	high	frequency	devices.		This	is	a	highly	preferred	approach	since	
wound	 coils	 do	 not	 offer	 the	 desired	 performance	 at	 radio	 and	 microwave	
frequencies.	 	 We	 find	 a	 similar	 approach	 in	 using	 a	 short‐circuited	 quarter‐
wavelength	TL	section	to	act	as	an	open	circuit	at	high	frequencies.			

Another	typical	application	is	to	use	a	quarter‐wavelength	TL	section	with	the	right	
value	 of	 	 to	 provide	 impedance	 matching	 between	 differing	 source	 and	 load	 resistive	
impedances.	

| / ∙ ∙ ,	e.g.	a	150	Ω	quarter‐wavelength	TL	can	match	a	75	Ω	source	to	
a	300	Ω	load.	

⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃	


