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Transmission	Lines	‐	Wave	Equations	

 Standing	Waves	and	Standing	Wave	Ratio

 Standing	Waves	and	the	Bounce	Diagram

 Addendum	C:	The	Bounce	Diagrams	in	the	Frequency	Domain

	
In	previous	lectures:	

In	 the	 last	 lecture,	 we	 learned	 about	 the	 physical	 implications	 of	 the	 reflection	
coefficient	Γ(z)	defined	as	the	ratio	between	the	–z	and	+z	waves.		We	also	learned	
about	the	driving	point	impedance	Z(z)	and	its	relationship	to	Γ(z).	

	

	
Figure	2.6	
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Standing	Waves	and	Standing	Wave	Ratio:	

This	 lecture,	 we	 will	 discuss	 transmission	 lines	 standing	 waves,	 Standing	 Wave	
Ratio,	and	the	Bounce	Diagram	in	the	Frequency	Domain.	

The	 combination	of	waves	 traveling	 in	both	directions	on	 the	same	TL	 is	 likely	 to	
cause	 standing	waves	 to	 form.	 	To	explain,	 let	us	 start	with	 the	 lossless	 line	 time‐	
domain	combined	solution,	Equation	(2.34).		

, | | | |	 	 	 2.34 	
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By	adding	and	subtracting	the	term	| | cos 	in	the	right	hand	side	of	
the	equation,	we	obtain:	

, | | | | 		
, | | | |

| | 	
, | | | | 2| | ∙
	 2.61 	

Where	 	 	 	 	 	 	 	 , .	

The	 first	 term	of	 the	 resulting	equation,	 |V | |V | cos ωt βz φ ,	has	 the	
same	traveling	form	as	the	positive‐z	traveling	wave	but	with	a	reduced	amplitude	of	
| | | | .	On	 the	 other	 hand,	 the	 second	 term,	 2|V | cos ωt φ ∙ cos βz
φ 	has	an	amplitude	of	2| |	and	describes	a	“standing	wave”	that	does	not	travel	
in	either	direction	on	the	line	and	t	is	characterized		by	stationary	“peaks/maxima”	
and	“valleys/minima”.	This	can	be	seen	mathematically	by	examining	the	expression	
and	recognizing	that	the	spatial	dependence	term	 cos βz φ 	forces	the	term	to	
zero	 at	 certain	 z	 locations	 irrespective	 of	 the	 time	 dependent	 term.	 	 This	 is	
demonstrated	in	Figure	2.13.	

	
Figure	2.13	

Hence,	 expression	 (2.61),	 as	 seen	 in	 the	 figure,	 is	 a	 mixture	 of	 a	 traveling	 wave	
component	and	a	standing	wave	one.	The	amplitude	of	the	standing	wave	component	
2| |,	is	determined	by	the	level	of	the	reflected	signal.		In	the	absence	of	reflections,	
there	will	be	no	standing	waves	and	we	get	pure	traveling	waves	on	the	line.	However,	
a	100%	reflection	where	| | | |	results	in	a	pure	“100%”	standing	waves	on	the	
TL	since	the	traveling	wave	term	 |V | |V | 	reduces	to	zero.				

Standing	Wave	Ratio:	

An	important	indicator	of	the	level	of	standing	waves	in	a	TL	network	is	the	standing	
wave	ratio,	SWR,	the	definition	for	which	is	the	ratio	of	the	peak	(max)	amplitude	of	
the	signal	and	its	valley	(min)	value:	

| |

| |

| |

| | | |

| |

| |
	 2.62 	
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SWR=1	for	a	pure	traveling	waves	(|Γ| 0 	and	SWR=∞	for	a	pure	standing	wave	
(|Γ| 1 .	

Figure	2.14	is	a	graphical	demonstration	of	the	relationship	between	the	SWR	and	|Γ|.	

	
Figure	2.14	

For	 lossy	 lines,	 the	 line	attenuation	causes	 the	signals	 to	decay	down	the	TL	path,	
resulting	in	the	signal	forms	displayed	in	Figure	2.15.	

	
Figure	2.15	

The	figure	shows	the	presence	of	a	mixture	of	traveling	and	standing	waves,	just	as	in	
the	lossless	case.		It	is	important	to	note	here	that	since	all	the	levels	are	changing,	it	
is	not	possible	 to	define	a	 single	value	 for	 the	SWR.	 	 It	 is	 typical	 in	 such	cases;	 to	
identify	the	location	at	which	the	SWR	is	given,	i.e.,	the	SWR	of	the	load	would	be	that	
of	the	nearest	minimum	and	maximum	to	the	TL	load.	

Another	 way	 of	 looking	 at	 the	 combination	 of	 the	 two	 traveling	 waves	 and	 their	
“interference”	is	to	consider	the	corresponding	phasor	diagrams.		For	convenience,	
we	 will	 consider	 the	 case	 of	 a	 lossless	 TL	 only.	 	 In	 this	 case,	 the	 two	 phasors	
representing	the	two	traveling	waves	are:	

	 	 	

Referring	 to	 Figure	 2.16,	 we	 will	 start	 with	 a	 graph	 of	 the	 two	 phasors	 at	 some	
location	z1	where	they	line	up	in	their	phase.		As	we	move	from	z1	to	z2	(where	z2>z1),	
the	phase	of	the	V+	phasor	changes	by	 	(decreases)	while	the	phase	of	the	
V‐	 phasor	 changes	 by	 	 increases .	 Similarly,	 we	 monitor	 the	 phasors’	
rotation	as	we	move	to	 	and	 .		The	sum	of	the	two	phasors	is	displayed	for	all	four	
positions	in	part	(b)	of	the	figure,	and	its	magnitude	is	plotted	vs	distance	in	part	(c)	
of	the	figure.	We	notice	that	the	sum	exhibits	the	same	shape	as	that	demonstrated	
earlier	in	Figure	2.13.		We	also	notice	that	the	peaks	(maxima)	occur	when	the	two	
phasors	 line	 up	 with	 equal	 phases.	 	 The	 spacing	 between	 two	 consecutive	 peaks	
correspond	to	a	180	degree	rotation	which	is	equivalent	to	a	distance	if	 /2.	
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	 (a)	 (b)	 (c)	 	

Figure	2.16	

Standing	Waves	and	the	Bounce	Diagram:	

In	this	section,	we	further	our	exploration	of	the	physics	of	the	multiple	reflections	/	
standing	 waves	 in	mismatched	 TL	 networks.	 In	 this	 regard,	 we	will	 consider	 the	
general	case	of	impedance	mismatches	at	both	the	source	and	load	ends;	hence,	we	
can	see	that	multiple	wave	reflections	will	occur	on	the	line	with	waves	bouncing	back	
and	forth	between	the	(generally)	mismatched	TL	ends.		Figure	2.17	depicts	the	TL	
network	and	the	expected	“bounce”	diagram	as	a	result.			

	
Figure	2.17	

Using	this	bounce	(reflection‐transmission)	diagram,	let	us	now	examine	the	physical	
meaning	 of	 the	 wave	 reflection	 and	 the	 corresponding	 reflection	 coefficient	 as	

defined	in	the	frequency	domain	in	Equation	(2.50),	Γ .	We	claim	that	the	
		wave	resulted	from	the	reflections	of	the	wave	 .	 	Meanwhile,	we	do	

not	see	any	discontinuities	at	a	general	location	z	that	can	cause	reflections	at	that	
location.	 	So,	where	did	the	 	 	come	from?		The	answer	lies	in	examining	the	
transients	build	up	before	the	steady	state	(harmonic)	is	reached.			

In	this	regard,	and	based	on	the	time‐domain	solution	obtained	earlier	in	Equation	
(2.29),	a	 , 	wave,	was	initially	launched	at	the	sending	end	of	the	line.		This	wave	
traveled	along	the	TL	experiencing	both	attenuation	and	phase	shift	but	no	reflections	
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until	 it	met	the	 first	discontinuity	at	the	 load	end.	 	At	the	 load	“discontinuity”,	 this	
wave	suffered	its	first	reflection	triggering	the	backward	traveling	wave,	 , .		The	
reflected	 wave	 would	 then	 travel	 back	 to	 the	 source	 end	 experiencing	 only	
attenuation	and	phase	change	until	it	met	the	source	end	discontinuity.		A	source	end	
reflection	would	then	be	in	order	and	the	bouncing	back	and	forth	continued.		With	
each	of	these	reflections,	in	general,	some	of	the	signal	energy	would	be	absorbed	in	
the	reflecting	elements	(the	TL	end	termination	impedances,	 	 	 .		

At	 steady	 state,	 there	will	 continue	 to	 be	 a	multiple	 reflections	 at	 both	 line	 ends	
resulting	in	a	series	of	+z	traveling	waves	and	another	series	of	–z	traveling	waves.		
The	 sum	of	 terms	of	 each	of	 these	 two	 series	 correspond	 to	 the	 two	 terms	of	 the	
steady‐state	harmonic	solution,		 	for	the	+z	series	and	 	for	the	–z	series.		
(The	 proof	 of	 this	 statement	 will	 be	 carried	 out	 later	 in	 this	 chapter).	 	 The	 ratio	
between	these	two	terms	is	what	we	defined	as	the	reflection	coefficient	Γ .		So,	as	
you	can	see,	Γ 	does	not	physically	exist	as	a	localized	phenomenon	at	the	z	location	
of	the	line;	rather,	it	is	a	result	of	the	comprehensive	performance	of	the	whole	setup	
as	seen	by	the	line	at	the	z	location.	

It	is	interesting	to	observe,	that	Γ 	has	a	localized	physical	meaning	at	 ℓ.		At	this	

location,	and	using	Equation	(2.49),	Γ Γ ℓ 	 	which	is	determined	by	the	

discontinuity	 mismatch	 at	 that	 location	 and	 is	 totally	 independent	 of	 the	 rest	 of	
system.		

Addendum	C	

The	Bounce	Diagram	in	Frequency	Domain	

Bounce	Diagrams	in	the	Frequency	Domain:	

The	title	of	this	section	may	sound	provocative	to	some.		We	talk	about	the	evolution	
of	the	signals	on	the	TL,	i.e.	transients,	not	in	the	time	domain,	but	in	the	frequency	
domain.	 	 This	 is	what	we	 cited	 in	 Chapter	 I	when	we	 said	 you	might	 find	 people	
communicating	in	French	in	the	state	of	England.		There	must	be	a	good	reason	for	
doing	so,	and	the	following	will	demonstrate	the	idea.	

So,	we	start	by	recognizing	that	an	initial	 launch	was	let	by	the	source.	 	The	initial	
voltage	wave	corresponding	to	this	launch	is	labeled	“A”	in	Figure	2.28.	This	phasor	
voltage	 appears	 across	 the	 input	 terminals	 of	 the	TL.	 	 Referring	 to	 the	 figure,	 the	
launched	 signal	 at	 t=0	 sees	only	 the	 input	 side	of	 the	TL	and	does	not	 see	 the	TL	
discontinuity	of	the	 load	side	till	 the	signal	arrives	there	after	a	delay	of	ℓ/c .	No	
reflections	 appear	 at	 this	 moment	 and	 hence	 only	 	 	 exists.	 	 The	
corresponding	current	would	be		 / 	 / ,	which	means	that	the	input	
impedance	of	 the	TL	at	 that	 instant	 (t=0)	 is	equal	 to	 .	The	 initial	 launch	voltage	
phasor,	A,	would	then	be	given	by	a	voltage	division	of	the	source	voltage	 	between	
the	source	internal	impedance	 	and	the	TL	input	impedance	 .	

0 | 	 ∙ 			 2.87 	
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Figure	2.28	

Referring	 to	 Figure	 2.28,	 the	 “Local”	 Re lection	 coef icients	 [Ρ(jω)	 ≡	 upper	 case	
RHO]	defined	at	the	load	and	source	“discontinuities”	are,	in	general,	different	from	
Γ(jω)	defined	earlier.	 	This	local	Ρ(jω)	is	the	reflection	coefficient	at	the	immediate	
location	of	 the	 “discontinuity”	 assuming	no	 further	 reflections	beyond	 the	 current	
location.	Said	another	way,	Ρ(jω)	is	the	“instantaneous”	reflection	coefficient	of	the	
harmonic	 wave	 at	 the	 time	 it	 arrives	 at	 a	 discontinuity	 not	 seeing	 any	 “future”	
discontinuities.	 	 This	 is	 different	 from	 Γ(jω)	 which	 defines	 the	 “steady	 state”	
reflection	coefficient	that	accounts	for	all	 “past	and	future”	discontinuities.	For	the	

example	 considered	 in	 Figures	 2.28‐2.30,	 	 	 	 	 	 	

since	there	are	no	“future”	discontinuities	beyond	the	load	end	of	the	line.	

In	 the	 following,	we	 need	 to	 refer	 to	 both	 Figures	 2.29	 and	 2.30.	 	 The	 difference	
between	the	two	figures	is	that	2.29	shows	the	multiple	reflections	at	both	line	ends	
while	2.30	adds	the	line	signals	at	an	interim	location	(z).		As	demonstrated	in	both	
figures,	the	initial	launch	(A)	travels	down	the	TL	experiencing	modifications	in	the	
form	of	attenuation,	 ,	and	phase	change,	 .		So,	at	location	z	on	the	line	the	
modified	initial	launch	will	take	the	form	of	the	phasor	 ∙ 	which	we	will	label	
at	 ∙ ,	 and	 by	 the	 end	 of	 the	 line	 at	 ℓ,	 the	 phasor	 will	 take	 the	
form	 ℓ

@ ℓ/ ∙ ℓ ∙ .	This	positive	traveling	wave	will	bounce	off	
the	ZL	discontinuity	causing	a	negative	z‐traveling	wave	at	 ℓ,	viz.,		

ℓ
@ ℓ/ ∙ 	 ℓ

@
ℓ ∙ ∙ 	

The	total	voltage	phasor	at	that	location	and	at	that	instant	would	be	
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ℓ 	 ℓ
@ ℓ/ 	 ℓ

@ ℓ/ ∙ ∙ ∙ 1 ∙ ∙ 	
	

	
Figure	2.29	

This	is	the	voltage	phasor	across	the	load	termination,	and	hence,	we	may	call	it	the	
transmitted	voltage	phasor	(at	that	location	and	at	that	instant).		This	component	will	
be	“absorbed”	by	the	load.	

	

ℓ	
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Figure	2.30	

Next,	 we	 examine	 the	 reflected	 phasor	 for	 the	 load	 side.	 	 Starting	 with	
the	 ℓ

@ ℓ/ ∙ ∙ ,	 this	 phasor	 changes	 through	 the	 multiplier	
∙ 	 ,	so,	at	location	z,	the	distance	traveled	would	be	 ℓ z	and	at	

the	source	end	the	distance	traveled	would	be	ℓ.	 	Hence	the	–z	traveling	wave	will	
have	its	phasor	expressions	as	 ∙ ∙ ∙ ∙ ∙ ∙ ∙ 	and	 ∙ℓ ∙ ∙ ∙

∙ ∙ ∙ = ∙ ∙ .	 This	 –z	wave	 arrives	 at	 the	 source	 end	 at	 2ℓ/c.		
When	it	does,	it	will	be	faced	with	the	discontinuity	of	the	source	impedance,	causing	
a	 reflection	 and	 a	 transmission	 (similar	 to	what	 happened	 at	 the	 load	 end).	 	 The	
reflection	coefficient	facing	the	–z	propagation	at	the	source	end	will	be	given	by	

.	 	 This	 makes	 the	 reflected	 and	 transmitted	 phasors	 ∙ ∙	A	∙ ]	 and	

1 ∙ ∙ 	A∙ ,	respectively.		Following	the	same	approach,	we	can	construct	the	
following	table,	Table	2.3,	for	the	phasor	bounce	diagram:	

∙ ∙ 			 2.88 	

Table	2.3	

@	Source	End	 @	location	z,	 @	Load	End

To		 	 	 z	Travel	 	 z	Travel z	Travel To

	 ‐z	Travel	 	 ‐z	Travel ‐z	Travel

	 A 	 A T AT

A 	 AT T 	 AT 1 AT

1 A	 	 A	 	 A T A

A	 	 A	 T 	 A 1 A

1 	 A	 	 A	 	 A T A

A	 	 A	 T 	 A 1 A

1 A	 	 A	 	 A T

	
	 	 Phasor	Series	 Expression	Sum

@
	S
ou
rc
e	

To	 	 1 A 1 A 1 A ⋯
1
1

	

‐z	 A A A ⋯
1

	

z	 A A A A ⋯
1

@
	z
	

‐z	 AT T A T A T ⋯
1

	

z	 A T A T A T ⋯
1

	

@
	L
oa
d	

‐z	 AT A A ⋯
1

	

z	 AT A A ⋯
1

	

To	 	 1 AT 1 A 1 A ⋯
1

1
	

	

ℓ		‐		 		‐		 		‐		 ℓ z	
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The	expressions	in	the	table	can	be	used	to	construct	answers	for	the	voltage	phasors	
as	functions	of	position,	i.e.:	

At	the	source	end:	

	 ∙ ∙ 	 (2.89)	

	
	 ∙

	
∙ ∙ 	 	 	 	 (2.90)	

0 	 (2.91)	

At	location	z:	

	 	 ∙
	 	

∙
∙ 	 ∙ ∙ 	 (2.92)	

	 	 	 	 ∙
	 	 	 	

∙
/ 	 ∙ ∙ 	 (2.93)	

∙ ∙ ∙ ∙ 	 (2.94)	

At	the	load:	

ℓ ∙ ∙ℓ ∙ ∙ℓ	 (2.95)	

It	is	important	to	mention	that	the	above	obtained	expressions	for	 	and	 	are	
in	agreement	with	those	obtained	earlier	in	Equations	(2.41)	and	(2.42).		This	can	be	

shown	upon	the	substitution	of	 	,	 	,	and	
	

V ∙ .	

⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃⊂⊃	


