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Chapter	III	–	Lecture	2	of	2	

Transition	to	Electrostatics	

Addendum	II	

Vector	Calculus	

Vector	Definition	and	Examples:	

A	vector	 is	 a	quantity	 characterized	by	having	a	 specific	magnitude	 and	a	 specific	
direction	at	each	point	in	space.		In	this	book	will	use	the	accented	notation	to	denote	
vector,	 e.g.,	 a	 vector	 “F”	 will	 appear	 as	 .	 	 A	 vector	 can	 be	 expressed	 as	 a	 scalar	
multiplied	by	a	unit	vector	that	has	the	same	direction	as	the	vector	itself:	

	 	

Examples	of	vectors	include	distance,	velocity,	and	force	among	many	other	physical	
quantities.		The	following	table	demonstrates	some	of	these	vector	quantities.	

Table	3.4	–	Examples	of	Vectors	

Vector	 Examples

Length	

Velocity	

Weight	

Surface	Area	

Force	

Torque	
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Vector	Representations	in	Coordinate	Systems:	

To	express	a	vector	in	a	coordinate	system	is	to	write	the	vector	in	terms	of	the	three	
orthonormal	components	of	that	coordinate	system.		This	is	done	by	projecting	the	
vector	along	the	three	directions	of	the	coordinate	system	and	finding	the	magnitude	
of	 each	 projection.	 	 If	 we	 denote	 the	 three	 projections	 of	 a	 vector	 F	 along	 the	 3	
coordinates	of	a	“1‐2‐3”	coordinate	system	as	F1,	F2,	and	F3,	respectively,	then	we	
can	write:	

	 	 	 	 3.1 	

where	 	 , 	 , 		 	are	the	corresponding	unit	vectors	of	the	coordinate	system,	
Figure	3.21.	

	
Figure	3.21	

In	 the	 following,	 we	 will	 overview	 vector	 representation	 in	 the	 three	 coordinate	
systems.		Two	types	of	vectors	will	be	demonstrated;	distance	vectors	and	others.	The	
reason	 for	 this	classification	 is	 that	distance	vectors	are	expressed	 in	 terms	of	 the	
coordinate	 system	dimensions	 and	 directions	while	 the	 others	will	 have	 different	
units	but	only	expressed	in	terms	of	the	coordinate	system	directions.	

Vector	Representation	in	a	Cartesian	coordinate	system 

	
Figure	3.22	

Figure	 3.22	 shows	 two	 types	 of	 distance	 vectors	 as	 represented	 in	 Cartesian	
coordinates;	distance	from	the	origin	and	distance	between	two	points.	The	distance	
from	the	origin	vector	which	we	denote	with	the	lower	case	r	is	in	fact	the	same	as	
the	Spherical	coordinate	vector	 	which	can	be	written	as:			

	 	 	  (3.2) 

The	distance	between	two	points	(1	and	2)	will	be	denoted	by	the	upper	case	vector	 .		
This	can	be	expressed	as	the	difference	between	two	r	vectors	as	follows:	
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	 	  (3.3) 

Vector	representation	for	a	general	form	vector	

Next,	we	 view	 the	 vector	 representation	 for	 a	 general	 form	 vector	 	 in	 Cartesian	
coordinates.		This	is	demonstrated	in	Figure	3.23	yielding	the	analytical	expression:	

	 	 	 	 3.4 	

	
Figure	3.23	

Vector	Representation	in	Cylindrical	coordinates	

	
Figure	3.24	

Figure	3.24	 shows	 the	 two	 types	of	distance	vectors	as	 represented	 in	Cylindrical	
coordinates.	The	distance	from	the	origin	vector	 	can	be	written	as:			

	 	  (3.5) 

It	is	to	be	noted	here	that	the	 	unit	vector	is	a	variable	one	which	may	cause	some	
analytical	 challenges	 in	 some	 cases	 especially	when	 integration	 is	 involved.	When	
these	challenges	dominate,	 it	may	be	“wiser”	to	switch	to	the	Cartesian	coordinate	
representation	where	all	the	unit	vectors	are	constants.	
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The	distance	vector	 		between	two	points	is	also	demonstrated	in	the	figure.	When	
expressed	as	the	difference	between	two	r	vectors	we	be	challenged	by	the	vector	
subtraction	of		 	 	 :	

	 	 	 	 	 	 	
	 	 	 	  (3.6) 

Again	 resorting	 to	 Cartesian	 coordinates	 offers	 a	 simple	 way	 to	 deal	 with	 this	
challenge.	

Similarly,	 the	general	 form	vector	 	 in	Cylindrical	 coordinates	 is	 demonstrated	 in	
Figure	3.25.		This	corresponding	analytical	expression	is:	

	 	 	 	 	 	 	

	 	 	 	 	 3.7 	

	
Figure	3.25	

Vector	Representation	in	Spherical	coordinates	

The	 case	 of	 Spherical	 coordinates,	 Figure	 3.26,	 has	 challenges	 similar	 to	 those	
discussed	 in	Cylindrical	coordinate	representation;	all	3	unit	vectors	are	variables.	
Switching	to	Cartesian	offers	the	same	convenience	as	discussed	above.	

	 	 	 	  (3.8) 

	
Figure	3.26	
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Vector	Operations	

The	 following	 table	 reviews	 various	 vector	 operations,	 gives	 examples	 of	 their	
graphical	 and	 physical	 applications,	 as	 well	 as	 their	 representations	 in	 the	 three	
coordinate	systems.		The	“red‐bold”	terms	in	the	expressions	below	indicate	cases	
where	 variable	 vectors	 present	 mathematical	 challenges.	 	 In	 such	 cases,	 we	 may	
resort	 to	 the	 Cartesian	 representation	 where	 the	 unit	 vectors	 have	 constant	
directions	at	all	times.	

Table	3.5	–	Vector	Addition	and	Subtraction	

A
dd
it
io
n	
&
	

Su
bt
ra
ct
io
n	

			 	 			 	
Cartesian	 	

	

Cylindrical	

	

Spherical	 	 

	
Table	3.6	–	Vector	Scaling	

Sc
al
in
g	

	
Cartesian	 	 	

Cylindrical	 	

Spherical	

	
Table	3.7	–	Vector	Dot	Product	

Sc
al
ar
	
D
ot

	P
ro
du
ct
	

W	 	Work	Done	by force ℓ

	 	 . ℓ ℓ . ℓ ℓ 	

	 I	 	Current	flow	through the	surface	

	 . 	 . 	
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	 ∙  

∙  

∙ 	 	 	 	
	 	
	 	

Cartesian	 ∙ 	 	 ∙ 	

Cylindrical	 ∙ 	 ∙ ∙ 	

Spherical	 ∙ ∙ ∙ 	

	
Table	3.8	–	Vector	Cross	Product	

V
ec
to
r	
(C
ro
ss
)	
P
ro
du
ct
	

	 	Torque	vector due	to	a force	

	

	Area	vector of	a parallelogram	with	sides	 ℓ

ℓ ℓ ℓ ℓ
	

	 	 	 	 	 	 	 	  

	 	 	 	 	 	 	 	  

	 	 	 	 	

	

	 0			,			 	

Cartesian	 			,			 			,			 	
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Cylindrical	 			,			 			,			 	

	 	

	

Spherical	 			,			 			,			 	
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Addendum	III	

Spatial	Distributions	and	Densities	

In	the	following	we	will	discuss	spatial	distributions	and	densities	of	both	static	and	
dynamic	quantities.	

Static	Distributions	and	Densities	

Static	quantities,	such	as	mass,	charge,	or	energy,	may	exist	in	several	possible	spatial	
distributions,	Figure	3.27:	

1. A	concentration	in	an	infinitesimally	small	volume,	which	we	typically	represent	
as	a	“point”.	

2. A	distribution	over	a	volume	with	infinitesimally	small	cross‐section,	which	we	
typically	represent	as	a	“line”.	

3. A	 distribution	 over	 a	 volume	 with	 infinitesimally	 small	 thickness,	 which	 we	
typically	represent	as	a	“surface”.	

4. A	distribution	over	a	volume	with	non‐zero	dimensions.	

	
Figure	3.27	

These	distributions	may	or	may	not	be	uniform.		To	express	their	spatial	features,	we	
use	appropriate	density	expressions	such	as	volume,	area,	or	 linear	density	of	 the	
quantity	distribution.		Densities	of	static	quantities	are	scalar	in	nature,	i.e.	have	only	
magnitudes	and	do	not	have	directions.	We	will	use	the	subscripted	ρv,	ρS,	and	ρℓ	to	
denote	volume,	area,	and	linear	densities,	respectively.	Hence,	for	the	static	quantity	
Q,	we	can	write	

	,			 	,			 	 ℓ ℓ
		 3.9 	

For	 uniform	distributions,	 the	 density	 is	 constant	 at	 all	 the	 distribution	 locations,	
otherwise,	the	density	would	be	a	function	of	position.		Depending	on	the	case,	these	
densities	 may	 or	 may	 not	 have	 physical	 relevance	 and	 their	 definition	 could	 be	
meaningless.		Examples	are	defining	a	volumetric	density	for	a	point	concentration	
where	 the	 volume	 is	 zero,	 or	 defining	 the	 linear	 density	 for	 a	 spherical	 volume	
distribution.		The	following	table	summarizes	the	corresponding	densities	for	the	four	
distribution	forms.	

Table	3.9	–	Static	Distribution	Densities	

Configuration	 Volume	Density 	Quantity	
per	unit	volume	

Surface	Density
Quantity	per	unit	area

Linear	Density 	
Quantity	per	unit	length	

Point	
Concentration	

Zero	volume	
ρv	 	∞	

Zero	area
ρS 	∞

Zero	length
ρℓ 	∞

Line	
Distribution	

Zero	volume	
ρv	 	∞	

Zero	area
ρS 	∞

ρℓ
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Surface	
Distribution	

Zero	volume	
ρv	 	∞	

ρS Atypical?

Volume	
Distribution	 ρv	 Atypical? Atypical?

	
Conversions	between	static	density	expressions:	

In	 some	 distribution	 configurations,	 more	 than	 one	 form	 of	 density	 can	 be	
simultaneously	defined.		An	example	is	a	cylindrical	volume	distribution	for	which	a	
volumetric	density	can	be	defined	while	a	linear	density	along	the	cylindrical	axis	can	
be	defined	as	well.		For	such	cases,	it	is	useful	to	have	conversion	expressions	between	
the	 different	 forms.	 	 In	 the	 following,	 we	 provide	 examples	 of	 such	 conversion	
relationships.	

Table	3.10	

	 Non	uniform	distribution Uniform	distribution
Sheet	

distribution	

	

is	defined	 	

	
	

∆

Rectangular	
prism	
Slab 	

distribution	

	

is	defined	 	

	
	

∆

	
	

∆

Circular	prism	
Cylinder 		

distribution	

	

is	defined	
	

	
	

∆

	
Dynamic	Distributions	and	Densities:	

Examples	of	dynamic	quantities	include	electric	current,	air	current,	fluid	flow,	and	
energy	 flow.	 Spatial	 distributions	 for	 a	 dynamic	 flow	 can	 only	 exist	 in	 one	 of	 the	
following	forms,	Figure	3.28:	

1. A	stream	distribution	with	infinitesimally	small	cross‐section,	which	we	typically	
represent	as	a	“line	current/flow”.	
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2. A	 stream	 distribution	with	 infinitesimally	 small	 thickness,	which	we	 typically	
represent	as	a	“surface	current	/	laminar	flow”.	

3. A	stream	distribution	with	non‐zero	cross‐sectional	area,	“volume	current/flow”.	

	
Figure	3.28	

These	distributions	may	or	may	not	be	uniform.		To	express	their	spatial	features,	in	
both	magnitude	and	direction,	we	use	appropriate	vector	density	expressions.		

					 					
ℓ
	 	 3.10 	

where	the	n	subscripts	indicate	that	both	dℓ	and	dS	must	be	orthogonal	to	the	flow	
and	 	is	the	unit	vector	along	the	current/flow	direction.		For	uniform	distributions,	
the	 densities	 are	 constant	 at	 all	 the	 distribution	 locations,	 otherwise,	 the	 density	
would	be	a	function	of	position.		Again,	depending	on	the	case,	these	densities	may	or	
may	 not	 have	 physical	 relevance	 and	 their	 definition	 could	 be	meaningless.	 	 The	
following	table	summarizes	the	corresponding	densities	for	dynamic	distributions.	

Table	3.11	–	Dynamic	Distribution	Densities	

Configuration	 Area	Density 	Quantity	
per	unit	area

Linear	Density 	Quantity	
per	unit	length

Line	Stream	
Concentration	

Zero	area

	∞

Zero	length

	∞

Surface	Stream	
Distribution	

Zero	area

	∞
Volume	Stream	
Distribution	 Atypical?

	
Conversions	between	dynamic	density	expressions:	

In	this	section,	we	demonstrate	the	relationship	between	the	two	forms	of	dynamic	
distribution	densities	in	cases	where	both	can	be	simultaneously	defined.		In	the	table	
below,	 we	 the	 example	 of	 a	 stream	 distribution	 in	 a	 slab	 configuration	 and	 the	
corresponding	conversion	relationships.	

Table	3.12	

	 Non	uniform	distribution Uniform	distribution	n

Slab	Stream	
Flow/Current	

	

is	defined	

	

∆
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Addendum	IV	

Line,	Surface,	and	Volume	Integrations	

Introduction	

In	 the	 course	 of	 this	 book,	 as	we	deal	with	 various	physical	 phenomena,	 analyses	
involving	integration	of	scalar	and	vector	quantities	 is	common.	 	We	often	need	to	
carry	out	contour	(or	line)	integrations,	integrations	over	an	area	of	a	surface,	a	closed	
surface	 as	 well	 as	 volume	 integrations.	 	 Our	 background	 in	 mathematics	 should	
enable	us	to	carry	most	of	these	integrations	once	they	are	set	up	properly.		We	can	
also	resort	to	integration	tables,	computer	software	packages,	or	even	numerical	tools	
for	“difficult”	integrations.		Hence,	in	this	addendum,	we	will	focus	on	two	aspects	of	
the	issue	that	are	often	the	obstacle.	One	is	how	to	set	up	the	integration	equation	
starting	 with	 the	 physical	 problem,	 and	 the	 second	 is	 how	 to	 deal	 with	 vector	
quantities	within	the	integrand.		

The	first	obstacle	of	setting	up	the	integral	is	an	“integral”	part	of	setting	up	the	proper	
mathematical	 model	 of	 the	 physical	 problem.	 	 This	 is	 an	 acquired	 skill	 that	 the	
learners	 in	 this	 field	acquire	with	practice.	 	The	 learner	needs	 to	get	exposed	 to	a	
variety	of	cases	and	a	variety	of	analysis	tools	to	appreciate	what	works	and	what	
does	not	and	when	to	use	a	specific	model	and	what	are	the	constraints	of	that	use.	
Gaining	this	skill	requires	proper	appreciation	to	the	physics	of	the	subject	and	good	
command	of	relevant	mathematical	tools.		This	will	be	demonstrated	and	emphasized	
throughout	the	different	chapters	of	this	book.			

We	now	turn	to	dealing	with	integrations	containing	vector	quantities.		This	will	be	
followed	by	an	overview/survey	of	line,	surface,	and	volume	“scalar”	integrations.	

Integrating	vector	quantities	

To	integrate	vector	quantities	is	simply	performing	vector	summation	of	incremental	
vector	elements.		Since	the	sum	of	vectors	is	controlled	by	the	directions	of	the	vectors	
involved,	the	process	of	vector	integration	must	take	into	account	the	variability	of	
the	direction	of	the	vectors	being	integrated.		Let	us	start	with	a	“sarcastic”	but	true	
statement	by	saying	that	“The	proper	way	of	handling	vector	integration	is	not	to	do	
vector	 integration.”	What	 is	meant	here	 is	 that	we	should	not	start	 the	 integration	
process	before	we	remove	all	vector	quantities	from	within	the	integrand.	

The	process	involves	finding	ways	to	get	all	vector	terms	outside	the	integration	sign	
leaving	only	scalar	quantities	 inside	the	integration.	 	To	extract	a	term	outside	the	
integral	operator,	this	term	must	be	a	constant.		Hence,	what	we	must	do	is	express	
all	 variable‐direction	 vectors	 in	 terms	 of	 fixed‐direction	 vectors	 that	 can	 then	 be	
extracted	outside	the	integration.	Let	us	cite	some	examples	to	demonstrate.	

Example	of	a	Cartesian	coordinate	Integral	

	 	 	 		 	 3.11 	
	 	 	 		 	 3.12 	

Example	of	a	Cylindrical	coordinate	Integral	

	 	 	 		 		 3.13 	

For	an	integration	along	dρ,	the	“ 	”	has	a	constant	direction	and	hence	it	is	a	constant	
vector	that	can	be	taken	outside	the	integration.	However	if	the	same	integration	was	
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along	dφ,	 the	“ ”	will	vary	as	we	vary	φ	and	hence	“ ”	needs	to	be	expressed	 in	
terms	 of	 other	 constant‐direction	 vectors	 to	 be	 able	 to	 carry	 out	 the	 integration.		
Logically,	 we	 use	 the	 Cartesian	 unit	 vectors	 “ , , 	 "	which	 are	 always	
constant	vectors	in	this	regard,	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 3.14 	

Adding	the	limits	between	0	and	2π,	this	integration	reduces	to:	

	 		 	 	 	 0	 3.15 	

This	result	makes	physical	sense	since	adding	the	variable	direction	vector	 	around	
a	complete	2π	(360	degrees)	rotation	will	produce	zero	net,	see	Figure	3.29.	

	
Figure	3.29 

Example	of	a	Spherical	coordinate	Integral	

	 	 	 	 	 /2 	 3.16 	
	 	 	 	 	 	

	 	 3.17 	

Integrating	scalar	quantities	

In	this	section,	we	will	survey	a	few	examples	of	line,	surface	and	volume	integrations	
that	we	will	find	relevant	in	the	chapters	ahead.	

Examples	of	Density	Integrations:	

Two	 types	 of	 densities	 are	 reviewed	 here;	 static	 and	 dynamic.	 Examples	 of	 static	
densities	include	mass	and	charge	distributions,	while	examples	of	dynamic	densities	
include	fluid	flow	and	electric	current.		

Static	Linear	Density	

If	 ℓ 	 is	 the	 linear	density	of	 the	distribution	of	a	quantity	Q,	we	can	
obtain	 the	 total	 Q	 by	 integrating	 the	 linear	 density	 over	 the	 length	 of	 the	
distribution.		

ℓ
	 ℓ ℓ	 ℓ	 3.18 	

Static	Surface	Density	

If	 		is	the	surface	density	of	the	distribution	of	a	quantity	Q,	we	can	
obtain	 the	 total	 Q	 by	 integrating	 the	 surface	 density	 over	 the	 area	 of	 the	
distribution.	

∬ 	 ∬ 	 	 3.19 	
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Static	Volumetric	Density	

If	 		is	the	volumetric	density	of	the	distribution	of	a	quantity	Q,	we	
can	obtain	the	total	Q	by	integrating	the	volumetric	density	over	the	volume	of	
the	distribution.	

∭ 	 ∭ 	 	 3.20 	

Dynamic	Linear	Density	

If	 ℓ 	is	the	linear	density	of	the	distribution	of	a	current	(flow)	I,	we	
can	obtain	the	total	I	by	integrating	the	linear	density	across	the	cross‐sectional	
length	of	the	distribution.	The	cross‐sectional	length	is	a	length	orthogonal	to	the	
flow	distribution,	Figure	3.30.	

ℓ
	 ℓ ℓ	 ℓ	 3.21 	

	
Figure	3.30	

Dynamic	Surface	Density		

The	total	flow	(current),	I,	flowing	through	a	specific	surface	is	the	integration	of	
the	 flow	 surface	 density	 (J=dI/dS)	 over	 the	 cross‐sectional	 surface	 area	 of	
interest.	 The	 cross‐sectional	 area	 is	 that	 of	 a	 surface	 orthogonal	 to	 the	 flow	
distribution,	Figure	3.31.	

∬ 	 ∬ 	 	 3.22 	

	
Figure	3.31	

Examples	of	Work	and	Energy	Integrations:	

The	work	done	by	a	force	acting	on	an	object	as	it	moves	an	unconstrained	object	
a	certain	distance	(along	the	action	line	of	the	force),	see	Figure	3.32.	

	 ℓ	 3.23 	
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Figure	3.32	

The	total	energy	stored	in	a	specific	volume	is	the	integration	of	the	volumetric	energy	
density	(w=dU/dv)	over	the	volume	of	interest.	

∭ 	 ∭ 	 	 3.24 	

Table	3.13	‐	Examples	of	integrations	in	different	coordinate	systems	

	 Line:	 	 	 Surface:	∬ Volume:	∭
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